

Forest inventory

- Accurate quantity & quality
- Timber supply forecast
- Stand delineation

Biomass estimation

- Carbon stock
- Bioenergy

Green vegetation in urban areas

- Vegetation around power lines
- Tree objects for planning in 3D

Remote sensing – products and methods for vegetation mapping

Platform	Lidar	Image	Usage Forest Management Planning (FMP)
Rotor wing (RW)	\checkmark	✓	 Corridor mapping (power-lines, roads) High point density LiDAR (10-100 point/m²)
Fixed wing (FW)	\checkmark	\checkmark	 Medium vast area missions (5-1000 km²) Low point density LiDAR (0,2-10 point/m²) High resolution images (0,02-0,50 m GSD)
Satellite		✓	 Large area missions Low resolution images (0,5-25 m GSD)
PAMS		\checkmark	 Small area missions (0,1-5 km²) High resolution images (0,02-0,1 m GSD)

Rotor wing laserscanning -Topeye

Fixed wing laserscanning

AFER

Input: Combining satellite images, LiDAR & field plots

Output: Biomass and carbon stock, ton/ha

Light Detection and Ranging

LiDAR - Principle

LIDAR parameters:

- First and last pulse reflection
- 50.000-200.000 pulses per sec
- 1.000-3.000 m altitude
- 20-40 cm footprint size
- 0.5-2.0 m spacing
- 500-1500 m swath

Transformation – heights

Height above ground

DTM - hillshade

Picture of the ground. The shape of the terrain can be interpreted in addition to ditches and roads.

Lidar image; DSM + LiDAR

Combined picture of ground and vegetation in coloured height classes. Older forest is easy to divide from seedling stands or younger forest.

Lidar intensity

Picture of LiDAR intensity. It's easy to interpret differences between harvested areas, roads and forest.

Forestry inventory

Main methods:

- Area based method (forest variables per area unit)
 - Point density typically 0.5 to 2.0 per m²
- Single tree approach (variables per tree as unit)
 - Point density typically 5 to 10 per m²
- The semi-individual tree crown approach (semi-ITC)
 - Predicting crown base heights (CBH) on the level of single crown segments
 - Point density typically 0.5 to 10 per m²
- The k-MSN approach (variables per tree species)
 - Images needed
 - Point density typically 0,5 to 2 per m²

Forestry – Area based methods

- Area based methods
 - kNN method
 - Regression functions
- LiDAR point density > 0.5 points / m²
- Map with forest types (strata)
- Estimation of forest parameters
 - Mean height (m)
 - Dominant height (m)
 - Mean diameter (cm)
 - Basal area (m²/ha)
 - Volume (m³/ha)
 - Number of trees (N/ha)

Processing Lidar data for forestry

Production Line - area based laser inventory

Sampling design – field plots

Sample plot example

• Sample plot with tree positions

Lidar heights as background

Orthophoto as background

Height and density – sample plots

Forest Map

Results per grid cell - query

Result per forest compartment

Forestry – Single tree methods

- Main input
 - Digital Surface model (LiDAR raster)
 - Aerial images
- Inverse watershed for tree segmentation
- Establishment of a relationship between
 - LiDAR height and tree height measured in the field
 - Tree height and tree diameter
- Classification tree species from aerial images
 - Images with orientation parameters
 - Re-projection of the LiDAR tree crown on the image
 - Extraction of spectral values
 - Classification
- Volume calculation (height, diameter, tree species)

Processing

- LiDAR point cloud
- Transformation to relative heights
- Rasterization: nDSM (normalized Digital Surface model)
- Single tree delineation / height extraction
- Comparison with field data
- Tree height evaluation
- Height / diameter relationship
- Tree species classification
- Diameter calculation for all trees
- Volume calculation for all trees

Rasterization: nDSM

- nDSM
- Black: 0 meter above ground
- White: 25 meter above ground

Example – RW scanning

Stand variables	Traditional	LIDAR					
	Photo- interpretation	Area based method	K-MSN approach	Single Tree method			
Mean height, H _L	15-25 %	5-10 %	5-10 %	5-10 %			
Dominant height, H ₁₀₀	15-25 %	5-10 %	5-10 %	5-10 %			
Basal area, G	20-30 %	10-15%	10-15%	5-15%			
Mean diameter, D _g	25-35 %	10-15%	10-15%	10-15%			
Diameter distribution on tree species level	Not possible	Not possible	15-30%	10-20%			
Tree species distribution	20-30%	20-30%	10-20%	5-20%			
Volume, V/ha	15-30 %	5-15%	5-15%	5-15%			
No of trees, N/ha	20-30%	10-15%	5-20%	5-20%			

Stand delineation & tree species classification including dead trees

- Stand delineation based on several criteria
 - Region growing algorithm _
 - Merging neighbouring objects that are alike, with regard to: —
 - Tree height Level3 Skog • "forest structure" L3 <30% Lav = Blanded Banking L3 > 70% Gran L3 > 70% Lav 13 > 70% Tall • Tree species L3 Blanded skog # 4 > # Groups / Phertance - Additional criteria: Shape of the stand Max area Min area Vakie Maan 1037.39 GM (DEre Generic 3810.36 Eustomized **Class Related Teatures** area ratio Gran while ratio L pv 0.3353 ameratio Tall 3659.84 curs are classified by ees manan may beached 1634.59 vere mean max heafres. 1496.16 rizivi mean max beeheil. **Ludefined** elations to sub obje Number I test dad the [1] 4 test Gran [1] 4 test Lav (1) A lest Tall(1) ations in p Ama a 4 best dadt tre [1] 50.08 4 test Gian (1) 2382.48 1227 08 4 test Lav (T) 4 test Tall[1]

Single pixel correlation: - height crown model (DCM) based on digital images

"Storm" product based on aerial photo → Single pixel correlation

2010

Analysis of differences

Summary: Products, variables and methods

Product	LiDAR*			Aerial image**			Satellite image***		
	Low	Med	High	Low	Med	High	Low	Med	High
Digital surface model (DSM)	х								
Digital crown model (DCM)	Х								
Forest variables (see list)	Х				Х				
Single tree estimation		Х			Х				
Dead wood & trees					Х				х
Understory layer			Х			Х			
Tree species					Х				Х
Habitat analyses		Х			Х				
Carbon counting	Х							Х	
Biomass estimation	Х			Х				Х	

The marker (x) indicate lowest level of resolution for each product or variable

* LIDAR resolution (point per m²): Low; 0,2-2, Medium; 2-10, High; >10 ** Aerial image (GSD): Low; > 0,4 m, Medium; 0,1-0,4 m, High; 0,02-0,1 m *** Satellite image (GSD): Low; > 20 m, Medium; 5-20 m, High; 0,5-5 m

References

- Norway
- Sweden
- Denmark
- Finland
- UK
- Portugal
- Spain
- Poland
- Canada
- Uruguay
- Tanzania

